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Abstract: Complex diseases are associated with the effects of multiple genes, proteins, and biological
pathways. In this context, the tools of Network Medicine are compatible as a platform to systematically
explore not only the molecular complexity of a specific disease but may also lead to the identification of
disease modules and pathways. Such an approach enables us to gain a better understanding of how
environmental chemical exposures affect the function of human cells, providing better perceptions about
the mechanisms involved and helping to monitor/prevent exposure and disease to chemicals such
as benzene and malathion. We selected differentially expressed genes for exposure to benzene and
malathion. The construction of interaction networks was carried out using GeneMANIA and STRING.
Topological properties were calculated using MCODE, BiNGO, and CentiScaPe, and a Benzene network
composed of 114 genes and 2415 interactions was obtained. After topological analysis, five networks
were identified. In these subnets, the most interconnected nodes were identified as: IL-8, KLF6, KLF4,
JUN, SERTAD1, and MT1H. In the Malathion network, composed of 67 proteins and 134 interactions,
HRAS and STAT3 were the most interconnected nodes. Path analysis, combined with various types of
high-throughput data, reflects biological processes more clearly and comprehensively than analyses
involving the evaluation of individual genes. We emphasize the central roles played by several important
hub genes obtained by exposure to benzene and malathion.

Keywords: network medicine; occupational health; malathion; benzene

1. Introduction

Complex diseases are associated with the effects of multiple genes, proteins, and
biological pathways [1]. Therefore, in the case of a complex disease, one should not expect
that a single genetic mutation can be identified as the cause. In fact, complex diseases or
disorders (e.g., cancer, AIDS, and obesity) stem from dysfunctions of different biomolecular
networks and not only their isolated components (e.g., genes, proteins, and metabolites) [2].

Biological networks are powerful resources for the discovery of genes and genetic
modules that drive disease. Biomolecular networks include gene and transcription regu-
latory networks, protein-protein interaction networks, metabolic, signaling, and hybrid
networks. With advances in high-throughput measurement techniques such as microar-
ray, RNA-seq, ChIP-on-chip, and mass spectrometry, large-scale biological datasets have
been continuously produced. Such data contain detailed information to understand the
mechanism of molecular biological systems and have proven to be useful in the diagnosis,
treatment, and design of drugs for complex diseases or disorders [3].

In this context, the Network Medicine [4] aims to use complex network analysis to find
clusters (or modules) in a biological network that could be related to a phenotype of interest
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based on a few hypotheses, such as the hypothesis that a protein-protein interaction (PPI)
network follows a scale-free (power law) degree distribution and that genes associated with
the same (or similar) pathways are clustered closely in the PPI networks; therefore, they
have a high probability of interacting with each other. This is a fundamental concept that
can be used to combine and amplify signals from individual genes [5], genes with similar ex-
pression patterns [6], synthetic lethality [7], or chemical sensitivity [8], which often present
similar functions. In addition, genes whose products interact physically [4,9] are part of the
same complex [10], display similar three-dimensional structures [11], similar phylogenetic
profiles [12], or have common protein domains [13]. Therefore, a biological pathway plays
an important role in understanding the mechanisms of complex diseases, improving clinical
treatment, and revealing drug targets and biomarkers [14]. Such an approach opens the
possibility of a better understanding of how environmental chemical exposures affect the
function of human cells, providing better insights into the mechanisms involved and assist-
ing in the monitoring/prevention of exposure [15]. For instance, benzene is classified by
the International Agency for Research on Cancer (IARC) as a carcinogen belonging to group
I, i.e., carcinogenic to humans [16]. Exposure to benzene is associated with the occurrence
of hematotoxicity, acute myeloid leukemia, and myelodysplastic syndromes [17–21].

Hematotoxicity effects are observed even at relatively low concentrations [22–25],
although the hematopoietic toxicity mechanisms of action in benzene exposure remain
unclear and are still under study, mainly by applying toxicogenomics techniques [26–28].

As is well known, benzene metabolism creates many reactive elements [16,29], and
exposure to benzene and its metabolites can generate DNA mutations, chromosome inser-
tions and/or deletions, DNA double-strand breaks, apoptosis, oxidative stress, and altered
gene expression [28].

Another relevant environmental chemical exposure is related to malathion, which is a
likely carcinogen due to the increased risk of cancer associated with its exposure [30,31]. Farm
workers and their children, particularly, face an increased risk of developing leukemia and
non-Hodgkin’s lymphoma due to their exposure to malathion [31–33]. In fact, studies have
shown that malathion induces chromosomal and DNA damage in humans [34,35]. Thus,
the IARC—a specialized cancer agency of the World Health Organization (WHO)—also
classified malathion as ‘probably carcinogenic to humans’ (Group 2A). However, molecular
changes caused by exposure to malathion have not been extensively explored to date, although
neurological malignancies are prevalent in humans.

The biological processes and molecular functions underlying such exposures consti-
tute complex systems [36], which cannot always be designated by a simplistic view such
as assigning functions to individual genes, proteins, and other cell macromolecules [37].
In this context, several studies have presented methods to analyze and identify essential
genes and proteins in a biological interaction network. Luo et al. [38] proposed a method
to predict essential proteins in PPI networks based on local interaction density and protein
complexes. Wang et al. [39] proposed a method to identify essential proteins by com-
bining information about protein complexes and topological features of the PPI network.
Hu et al. [40] address a method to be applied to weighted networks by considering the total
strength of the interaction, the number of edges of the interaction, and the distribution of the
total strength of the connection at the edge of the connection in the local domain. Cinaglia
and Cannataro [41] and Dai et al. [42] address the use of static network alignment methods
adapted to the dynamic context by performing network discrimination and providing other
additional information. By reporting how various problems can be transferred from static
networks to dynamic networks, taking into account temporal information. In addition,
many of the key factors for measuring nodes in complex networks are based on graph
theory to quantify the topological structure and attributes of each node, and comparisons of
the centrality of each node are made by using different centrality calculation methods, such
as degree center, median center, proximity center, and edge clustering coefficient center.
Quantitative methods are also used to find the essential nodes in networks [43–46].
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Considering these issues, this study adopted a systems biology approach to reconstruct
networks of molecular interactions based on differentially expressed genes (DEG) related
to benzene and malathion exposure, retrieved from literature text mining. Using some of
the Network Medicine hypotheses, such as the disease module and the local hypotheses,
our goal is to use network analysis to evaluate possible biological pathways associated
with the response to benzene and malathion. Gene interactions were observed using the
GeneMANIA software (version 3.5.2), while interactions between proteins were detected
using the Search Tool for Retrieval of Interacting Genes (STRING) database (version 11.0).
The Molecular Complex Detection (MCODE) software (version 2.0.2) was used for the char-
acterization of clusters of different biological processes, and the Biological Networks Gene
Ontology (BiNGO) software (version 3.0.5) was used for ontological gene characterization.
The Cytoscape software (version 3.6.0) was used to calculate different network centrality
metrics from these genes.

2. Results

To create, analyze, and select the hub genes related to exposure to benzene and
malathion, a total of 96 human DEGs were selected through a bibliographic search for
articles published between 2010 and 2014, dealing with quantitative microarray data for
environmental and occupational exposure to benzene (Table 1). Additionally, 57 human
DEGs were selected through a bibliographic search for articles published with quantitative
microarray data for malathion exposure (Table 2). Figure 1 shows the entire experimental
design, and a list of all genes selected for benzene and malathion bibliographic searches, in
addition to the list of genes added outside the list in the network creation stage by STRING
and GeneMANIA, is present in Supplementary Table S1.

Table 1. Benzene list of the most important studies obtained herein and their selected genes.

Reference Method Exposure Controls DEGs

McHale et al. [47] Microarray
83 cases of benzene

exposure ranging from
<<1 to >10 ppm.

42

16 genes with high expression
(SERPINB2, TNFAIP6, IL1A, KCNJ2, PTX3, F3,

CD44, CCL20, ACSL1, PTGS2 CLEC5A,
IL1RN, PRG2, SLC2A6 GPR132, and PLAUR).

Bi et al. [48] cDNA microarray 7 women were diagnosed
with benzene poisoning. 7

Top 40 genes with altered expression (PTGS2,
BAI3, GCL, CYP4F3, MY047, TRA@, AD022,
PRKCH, RASGRP1, FPR1, TGFBR3, GRO1,
SEL1L, CSF2RB, IFITM1, STAT4, IFITM2,

ABLIM, KIAA1382, SPTBN1, HBB, PRKDC,
S100A10, ITGB2, TKT, VAMP8, FOSB, ASAHL,

CDC37, SLC25A6, CLN2, ACTA2, CST3,
HLA-DMB, ALDH2, LGALS2,

LGALS1, ARHB, KLF4, and ATF3).

Xing et al. [49] Microarray (RTPCR) 11

People in the same
sector with no
symptoms of

benzene poisoning.

Decrease in the expression of p15 (CDKN2B)
and p16 (CDKN2A).

Sarma et al. [50] Microarray

Culture of HL-60 cells
treated with IC50

concentrations of benzene,
hydroquinone, and

benzoquinone.

Culture of HL-60
cells treated with

dimethyl sulfoxide.

Alteration in expression of 27 genes
(CCL2, EGR1, GCLM, PMAIP1, SESN2, CD69,

HERPUD1, HSPA8, RIT1, SERTAD1,
SLC38A2, SLC7A11, DNAJB4, ANKFY1,

ANLN, AR, ARHGAP19, CDCA2, DEPDC1,
ELK1, FBXW9, HERC2, HTR5A, KIF20A,

MKI67, MT1G, and MT1X).

Gao et al. [51] cDNA microrray

4 people were diagnosed
with benzene poisoning,

and 3 people from the
same factory were

exposed but had no
symptoms.

3

Top 14 significant genes with altered
expression (PIK3R1, PIK3CG, PIK3R2, GNAI3,
SYK, PTPN6, KRAS, NRAS, PLCG2, NFKB1,
LYN, SOCS4, HLA-DMA, and HLA-DMB).
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Table 2. Malathion list of the most important studies obtained herein and their selected genes.

Reference Method Exposure Controls DEGs

Anjitha et al. [52] Microarray

Culture of human
lymphocytes treated with

three concentrations of
malathion (50, 100, and

150 µg/mL).

Culture of human
lymphocytes treated with

DMSO (1%).

57 DEGs (B4GALT1, BMI1, BTG1,
C1QBP, CASP4, CBFB,

CD14, CD5, CD36, CDK2, CEBPG,
COL1A2, DDX11, DUSP1, EPHA4,

EPS8L1, FGF6, FGFR1, FOXO4, FSHR,
GNAI2, GPS2, GRAMD4, GSTP1,

HLA-A, HLA-E, HTATIP2, IL13RA2,
IRAK1, LGALS1, LPCAT4, LZTS2,
MAP2K3, MICA, NINJ1, NME2,

NTRK2, PAX1, PEBP1, PFN1, PHB,
PLAU, PML, PRKD1, RAB11FIP3,

SHC1, SOCS3, TEK, TFRC, TLR8, TPR,
TRIM35, TUSC2, TWIST1,
VHL, VPREB3, and WT1)

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 1. Main stages of the experimental project. 

2.1. Interaction Network 
The analysis of biological interactions by GeneMANIA revealed a network compris-

ing 114 genes and 2415 interactions (Figure 2A) and a PPI network comprising 67 nodes 
and 134 edges by STRING.  

The gene-gene network presented a predominance of co-expression interactions (Fig-
ure 2B), followed by physical interactions (Figure 2C), molecular pathways (Figure 2D), 
predicted (Figure 2E), co-localization (Figure 2F), genetic interactions (Figure 2G), and 
shared protein domains (Figure 2H), respectively. 

Figure 1. Main stages of the experimental project.

2.1. Interaction Network

The analysis of biological interactions by GeneMANIA revealed a network comprising
114 genes and 2415 interactions (Figure 2A) and a PPI network comprising 67 nodes and
134 edges by STRING.

The gene-gene network presented a predominance of co-expression interactions
(Figure 2B), followed by physical interactions (Figure 2C), molecular pathways (Figure 2D),
predicted (Figure 2E), co-localization (Figure 2F), genetic interactions (Figure 2G), and
shared protein domains (Figure 2H), respectively.

2.2. Cluster Analysis

The MCODE software (version 2.0.2) classified and separated molecular aggregates
into clusters. The cluster analysis identified five sub-networks (Figure 3), ranked based on
node connectivity level (score).
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Figure 2. Benzene biological interaction network. (A) Interaction network generated using Gen-
eMania with 114 genes comprising 2415 interactions; (B) co-expression interactions; (C) physical
interactions; (D) pathways; (E) predicted; (F) co-localizaton; (G) genetic interactions; and (H) shared
protein domains.
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10.4; Cluster 3: score = 6.933; Cluster 4: score = 3.333; and Cluster 5: score = 3.25. Nodes may represent 
biological elements, while the edges describe the nature of their relationships (co-expression; phys-
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betweenness = 5.25, and eigenvector = 0.23. 

In the 3rd cluster, SERTAD1 and MT1H were identified as bottleneck nodes, with 
degree = 8.25, betweenness = 9.125, and eigenvector = 0.23. The 4th and 5th clusters are 
poorly interconnected, with central nodes in DEPDC1 and ARHGAP19 (degree = 3; be-
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eigenvector = 0.5), respectively (Figure 4). 

In the PPI network, HRAS and STAT3 were identified as the bottleneck nodes with 
degree = 5.5, betweenness = 52.95, and eigenvector = 0.28 (Figure 5). 

Figure 3. Overview of the five clusters obtained from the benzene gene-gene network using the
MCODE software. Interaction network generated using GeneMANIA with 114 nodes (8 nodes
expanded from a 96-gene list) and 2415 edges. All nodes are interconnected in a unique connected
component, but 38 nodes do not belong to any cluster: Cluster 1: score = 27.667; Cluster 2: score = 10.4;
Cluster 3: score = 6.933; Cluster 4: score = 3.333; and Cluster 5: score = 3.25. Nodes may represent
biological elements, while the edges describe the nature of their relationships (co-expression; physical;
pathways; predicted; co-localizaton; Genetic interactions; and shared protein domains).

2.3. Centiscape Analysis

In order to search for network biomarkers, the structure and manner of information
flows (connectivity) along the networks were evaluated (Figures 4 and 5 and Table 3).

Table 3. Most relevant nodes for Benzene and Malathion networks.

GeneMania Benzene Network

Symbol Name HGNC-ID

KLF4 KLF transcription factor 4 6348

SERTAD1 SERTA domain containing 1 17932

IL8 Interleukin 8 6025

JUN Jun proto-oncogene, AP-1
transcription factor subunit 6204

KLF6 KLF transcription factor 6 2235

MT1H Metallothionein 1H 7400

String Malathion

Symbol Name HGNC-ID

HRAS Hras proto-oncogene, GTPase 5173

STAT3 Signal transducer and
activator of transcription 3 11364
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Figure 4. Most relevant nodes (in yellow) for the subnetworks predicted by the MCODE analysis
in the benzene gene-gene network. Centrality is calculated by node degree, betweenness, and
eigenvector. Cluster 1, IL8 was identified as the bottle-neck node; Cluster 2, KLF4, KLF6, and JUN
were identified as the bottleneck nodes; Cluster 3, SERTAD1 and MT1H were identified as bottleneck
nodes and Clusters 5 DEPDC1 and ARHGAP19 were identified as bottleneck nodes.
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Figure 5. Most relevant nodes (in yellow) for Malathion PPI network analysis in STRING. Centrality
is calculated by node degree, betweenness, and eigenvector. Interaction network generated using
STRING with 67 nodes (10 nodes expanded from a 57-gene list) and 134 edges. Fifty nodes are
interconnected in the main connected component, while 17 nodes are isolated.



Int. J. Mol. Sci. 2023, 24, 9415 8 of 18

For Benzene network exposure, in the 1st cluster, IL8 was identified as the bottleneck
node with degree = 34.12903, betweenness = 3.03225, and eigenvector = 0.18904. In the 2nd
cluster, KLF4, KLF6, and JUN were identified as the bottleneck nodes with degree = 12.625,
betweenness = 5.25, and eigenvector = 0.23.

In the 3rd cluster, SERTAD1 and MT1H were identified as bottleneck nodes, with
degree = 8.25, betweenness = 9.125, and eigenvector = 0.23. The 4th and 5th clusters
are poorly interconnected, with central nodes in DEPDC1 and ARHGAP19 (degree = 3;
betweenness = 0.5, and eigenvector = 0.49) and SLC38A2 (degree = 3; betweenness = 6.6,
and eigenvector = 0.5), respectively (Figure 4).

In the PPI network, HRAS and STAT3 were identified as the bottleneck nodes with
degree = 5.5, betweenness = 52.95, and eigenvector = 0.28 (Figure 5).

2.4. GO Overrepresentation Analysis (BiNGO)

Of total 390 ontologies (Table S2) regulated by DEGs in the Benzene network, the GO
(Gene Ontology) enrichment analysis identified up-frequency of Overrepresentation (adjusted
p value < 0.05) in Biological Processes for “biological regulation”, “ regulation of the biological
process”, and “regulation of the cellular process”, while down-frequency of Overrepresen-
tation in Biological Processes related to the “positive regulation of nitric oxide biosynthetic
process”, “regulation of vascular endothelial growth factor production”, “cytokine-mediated
signaling pathway”, “leukocyte migration”, “leukocyte chemotaxis”, “cell chemotaxis”, and
the most significant terms were “response to chemical stimulus”, indicating that the regula-
tion of factors related to cellular locomotion, mainly leukocytes, plays a central role on the
relationship between benzene and the development of leukemia (Figure 6).
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Of total 314 ontologies (Table S3) regulated by DEGs in the Malathion network, the GO
enrichment analysis identified up-frequency of Overrepresentation (adjusted p value < 0.05)
in Biological Processes for “regulation of cellular process”, “regulation of biological pro-
cess”, and “biological regulation”, while down-frequency of Overrepresentation in Bio-
logical Processes related to “negative regulation of apoptosis”, “negative regulation of
cell death”, “negative regulation of programmed cell death”, “transmembrane receptor
protein tyrosine kinase signaling pathway”, and the most significant terms were “positive
regulation of biological process”, indicating more general biological functions and cell
death regulation (Figure 7).
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3. Discussion

STRING and GeneMANIA are two well-known and simple-to-use web tools, with
no need for the user to have advanced knowledge in programming to use them. When
compared to other tools such as the Alignment-Based Network Construction Algorithm
(ANCA) [53], their simple interface, web access, and the possibility that they can produce a
list of associated genes from a query based on several biological associations make these
tools more attractive for users.

These two tools provide the same service for four biological associations (physical
interaction, genetic interaction, co-expression, and co-citation), but other associations are
unique to a particular tool. STRING, for example, has three unique biological associations
(gene fusion evidence, co-occurrence, and pathway evidence), as well as GeneMANIA
(co-inheritance, colocalization, and shared protein domains).
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STRING provides a limited variety of association network data to be used for a given
query. In contrast, GeneMANIA generates customized results for the consulted genes and
the data sources selected by the user. However, GeneMANIA needs extensive literature
to filter the results (e.g., the co-expression data, which is a database of cancer genomes),
while STRING may be more suitable for cases where not so much data is available. This
is precisely why STRING was adopted for malathion DEGs, since not many data exist
for humans (according to IARC classification [8], malathion is considered 2A—“probably
carcinogenic to humans”).

Among the advantages observed when using GeneMANIA is the potential to expand
the search for related genes, which in this study represented 96 genes obtained from the
literature, for a final network comprising 114 genes (Table S1). Some of the added genes
also show altered expression upon benzene exposure (such as JUN, KLF6, KFP36, and
BCL2A1) [54–56]. However, one of the limitations of using this software (version 3.5.2) is
its inability to identify gene synonyms, as GeneMANIA did not identify TRA@, AD022,
and its synonyms as valid names, as well as p15, although the official name CDKN2B was
identified. In addition to its ability to detect and compensate for data redundancy, the
GeneMANIA Prediction Server also displays an advantage due to the predictive accuracy
and propagation of its algorithm [57,58].

With both approaches demonstrating potential in their use to identify hub genes with
biological plausibility in identifying alteration/characterization of exposure and possible
use as a target for cancer diagnosis, prognosis, and treatment. For example, the hub genes
identified in this study are:

Benzene exposure:
IL-8 is a chemokine related to the promotion of chemotaxis and neutrophil degranula-

tion. This chemokine activates multiple intracellular signaling pathways and is a significant
regulatory factor within tumor microenvironments [54]. Increased IL-8 expression is present
in several cell types in the presence of benzene metabolites [55,59,60]; Gillis et al. [58] have
demonstrated that human peripheral blood mononuclear cells (PBMCs) induce the pro-
duction of cytokines in the presence of benzene metabolites, such as IL-8, at levels from
10 to several thousand-fold, resulting in increased cytokine levels in the medium, while
the effects of benzene metabolites on the secretion of soluble cytokines are varied. For
example, reductions in IL-8 production dependent on hydroquinone and catechol concen-
trations but not on benzenetriol and benzoquinone have been observed. This demonstrates
the relevance of network visualization as a whole, not just the possibility of direct IL-8
changes, where the most specific Biological Process of the Benzene network are related to
cytokine-mediated signaling pathways.

Krüppel-like factors (KLFs) are highly conserved zinc-finger proteins that regulate
cellular transcription machinery and regulate a wide range of cellular functions, including
cell proliferation, apoptosis, differentiation, and neoplastic transformation, by binding to
GC-rich promoter regions [51,56]. KLF6 and the proto-oncogene JUN are significant in
differentiation and cell death, hematopoiesis, and cell survival. Regarding functions, all
categories linked to DNA structure and transcription were present (in the case of benzene
exposure and the identification of possible biomarkers, this becomes important) [51]. Unlike
the JUN gene, which is known to regulate myeloid differentiation [61], the KLF6 gene is a
known tumor suppressor for prostate [62], colorectal [63], lung [64], ovary [65], gliomas [66],
head and neck [67], and hepatocellular cancer [68]. However, the KLF6 gene inhibits JUN-
dependent transcription, which leads to an antagonistic effect on cell proliferation induced
by the JUN gene [69]. This demonstrates both the non-specificity of benzene-inducing
changes and the importance of a biological interaction approach.

SERTAD1 antagonizes the function of the inhibitor of apoptosis-stimulating protein
p53 (iASPP), preventing its entry into the nucleus to interact with p53 in leukemic cells
when iASPP is in its overproduction stage [70]. Evidence associating increased SERTAD1
expression with the presence of benzene and its metabolite benzoquinone has been reported
in the literature [51].
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The HRAS protein is a small GTPase that cycles between inactive and active conforma-
tions. In the active state, HRAS binds to guanosine triphosphate (GTP) and possesses an
intrinsic enzymatic activity that cleaves the terminal phosphate of this nucleotide, convert-
ing it to GDP. Upon conversion of GTP to guanosine diphosphate (GDP), HRAS is made
inactive [70]. STAT3 is a member of a family of cytoplasmic proteins that participate in cel-
lular responses to cytokines and growth factors as transcription factors. Signal transducers
and activators of transcription (STATs) are transcription factors that transmit signals from
the extracellular surface of cells to the nucleus. STAT3 is phosphorylated and activated in
response to interleukin-6, contributing to an increased expression of genes activated in the
liver during the acute phase response to inflammation [71].

Malathion network context:
Dysregulation of HRAS and STAT3 pathways is frequently observed in several can-

cers [72–74]. Then altered HRAS protein is permanently activated within the cell. This
overactive protein directs the cell to grow and divide in the absence of outside signals, leading
to uncontrolled cell division and the formation of a tumor [2]. STAT3 regulates basic biologi-
cal processes essential to tumorigenesis, including cell-cycle progression, apoptosis, tumor
angiogenesis, invasion and metastasis, and tumor-cell evasion of the immune system [75].

GO analysis and pathway enrichment provided further insights about Biological
Processes related to Benzene and Malathion networks. The interrelationship between
pathways and genes can be observed as the most frequent pathways represent more general
processes and the least frequent pathways represent more specific gene processes. Such
Benzene network functions are associated with leukemia mechanisms, and several of these
functions and processes are mediated by IL1A and PTGS2, which play a central role in the
characterization of gene expression associated with benzene exposure [47]. IL1A exhibits
a single nucleotide polymorphism (SNP), which increases the expression of its mRNA
and is inversely associated with granulocyte counts in benzene-exposed individuals [56],
while PTGS2 overexpression frequently occurs in pre-malignant and malignant neoplasms,
including hematological malignancies [76]. The Malathion network is more associated with
cellular death regulation mechanisms.

Therefore, to approach a complex disease study, a useful clue is provided by the fact
that genes, gene products, and small molecules interact with each other to form a complex
interaction network. Thus, an alteration in one gene might propagate through interactions,
possibly affecting other genes in the network. The fact that one can observe similar disease
phenotypes despite different genetic causes suggests that these different causes are not un-
related but rather jointly contribute to dysregulating the same component of the cellular
system [1]. However, it is worth noting that exposure to low concentrations of environmental
and occupational carcinogens does not eliminate the risk, considering that there is no safe
exposure limit to carcinogenic substances such as benzene and malathion [77–79].

Moreover, one of the limitations of this study is that the representation of these com-
plex networks of undirected biological interactions represents only a large number of
possible pathways and interactions without taking into account the direction and dynamics
of these processes. Although this approach shows potential to identify hub genes with bio-
logical plausibility in identifying alteration/characterization of exposure and possible use
as a target for cancer diagnosis, prognosis, and treatment. In the limiting case, undirected
network analysis assumes that all biological interactions and pathways represent processes
occurring at the same rate, and then the observed clustering may lead to unrealistic con-
clusions. For example, interaction dynamics (chemical reaction kinetics) may promote
some pathways while inhibiting others, just as the expression of some genes inhibits that of
others [70,80]. For this reason, additional studies are recommended, mainly those involving
directed networks. Once the directions in which information flows in the network are
known, it can lead to a better identification of potential markers for diagnosis, treatment,
and prevention.
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4. Materials and Methods
4.1. Data Collection

Text mining was carried out using the bibliographic searches of NCBI (PubMed),
Agilent Literature Search, Gene Expression Omnibus (GEO), Reactome, ArrayExpress,
and Medline, involving two queries: one with the keywords “benzene gene expression”,
“benzene microarray”, “benzene expression”, and “benzene poisoning;”, and another
with the keywords “malathion gene expression”, “malathion microarray”, “malathion
expression”, and “malathion poisoning”.

4.2. Construction of the Protein-Protein Interaction (PPI) Network

The Search Tool for Retrieval of Interacting Genes (STRING 11.0; http://string-db.org/
accessed on 22 February 2022) was used to evaluate the PPI of DEGs related to malathion
exposure. The PPI network was derived from proven experimental statistics such as auto-
mated text mining of scientific literature, experimental data, available signaling pathways,
the PPI database, systematic coexpression, phylogenetic co-occurrence, observation of
neighboring genomes, and genetic fusion events. We only extracted the edges with a mini-
mum confidence score of 0.7 (high confidence) and the maximum number of interactors at
the first shell with no more than five interactors.

The visualization of network and module analysis was carried out with the software
Cytoscape (version 3.6.0; http://www.cytoscape.org/ accessed on 15 February 2018).

4.3. Extended Interaction Network Analysis

The obtained gene list corresponding to benzene exposure was used for a functional
and gene ontology (GO) analysis using GeneMANIA (version 3.5.2; http://genemania.
org/ accessed on 17 February 2018), a tool used for predicting gene function that can be
implemented as a plug-in for the Cytoscape networks visualization software (version 3.6.0;
http://www.cytoscape.org/ accessed on 15 February 2018) [81].

The biological data sets searched by GeneMANIA, the characteristics considered for
interaction formation, and the data source for the network creation are shown in Table 4.

Table 4. List of interaction network categories demonstrating the information for the creation of the
biological network interactions and the data source researched by GeneMANIA.

Network Categories Datasets Network Information Data Source

Co-expression: Gene expression

Two genes are linked if their
expression levels are similar
across conditions in a gene

expression study.

Most of these data are collected
from the Gene Expression

Omnibus (GEO).

Physical Interaction: Protein-protein interaction
Two gene products are linked if
they were found to interact in a

protein-protein interaction study.

These data are collected from
primary studies found in protein
interaction databases, including

BioGRID and PathwayCommons.

Genetic interaction: Genetic interaction

Two genes are functionally
associated if the effects of

perturbing one gene are found to
be modified by perturbations

to a second gene.

These data are collected from
primary studies and BioGRID.

Shared protein domains: Protein domain
Two gene products are linked if

they have the
same protein domain.

These data are collected from
domain databases such as

InterPro, SMART, and Pfam.

Co-localization:
Genes expressed in the same

tissue or proteins found in the
same location.

Two genes are linked if they are
both expressed in the same tissue
or if their gene products are both

identified in the same cellular
location.

http://string-db.org/
http://www.cytoscape.org/
http://genemania.org/
http://genemania.org/
http://www.cytoscape.org/


Int. J. Mol. Sci. 2023, 24, 9415 13 of 18

Table 4. Cont.

Network Categories Datasets Network Information Data Source

Pathway: Pathway
Two gene products are linked if

they participate in the same
reaction within a pathway.

These data are collected from
various sources, such as Reactome

and BioCyc, via
PathwayCommons.

Predicted:
Predicted functional relationships

between genes, often protein
interactions.

For instance, two proteins are
predicted to interact if their

orthologs are known to interact in
another organism. In these cases,

network names describe the
original data source of

experimentally measured
interactions and the organism

from which the interactions were
mapped from (e.g. a mouse

network predicted
from a human network).

A major source of predicted data
is mapping known functional

relationships to another organism
via orthology. These data are

collected from various sources,
such as BioGRID

and I2D orthology.

Source: GeneMANIA network categories (http://pages.genemania.org/help/ accessed on 28 February 2023).

For the analysis, we applied the default setting of 20 genes, which present the highest
number of interactions. The software (version 3.5.2) standard was maintained regarding
the advanced settings for physical, genetic, and interrelated paths, only modifying the
co-expression data for articles on genomic leukemia and other hematological diseases.

4.4. Identification of Molecular Complexes

Highly interconnected, or dense, regions may represent molecular complexes. The
Molecular Complex Detection (MCODE) algorithm, an automated method for finding
clusters (highly interconnected regions), was used to identify sets of molecules that strongly
interact with each other in the Benzene network. In addition, MCODE standard parameters
were maintained (degree cutoff = 2, node score cutoff = 0.2, K-core = 2, and maximum
depth = 100).

4.5. GO Category Representation

The biological network gene ontology (BiNGO) tool was used to perform a GO func-
tional enrichment analysis. The hypergeometric distribution was used for the biological
processes and molecular functions of functional overrepresentation categories. Only the
over-represented GO categories were considered significant (adjusted p value < 0.05).

4.6. Centrality Analysis

Centralities are parameters that identify nodes with relevant positions in the global
network architecture. The CentiScaPe 2.2 plug-in was used for clusters displaying an
overrepresentation of GO categories of interest.

CentiScaPe calculates specific centrality parameters, describes the network topology,
and assists in identifying the most important nodes in a complex network [82]. According
to the connectivity of each node degree, betweenness, and eigenvector, the arithmetic mean
of each centrality parameter was defined to obtain the most connected nodes.

Degree centrality indicates the number of adjacent nodes that are connected to a
unique node. If the degree of centrality of a given node is much larger than the average
degree of centrality of the network, such a node is classified as a hub. Hubs in interactive
networks tend to be essential since their exclusion reduces the connectivity of the global
network; consequently, they also represent greater biological relevance [4,83]. Betweenness,
in turn, is defined by the number of shortest paths between all pairs of nodes that pass
through a node of interest [82,84]. The nodes with the highest betweenness score (the
‘bottleneck’) control most of the information flow in the network, as they present the largest
number of shortest paths (between other nodes in the network) passing through. As such,

http://pages.genemania.org/help/
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bottleneck genes (nodes in the interactome ranked by betweenness centrality) are related to
regulatory functions, representing critical points in the PPI network [85]. The eigenvector
defines the node “prestige” of a network, i.e., the eigenvector centrality of a node in a
network is large if this node is connected to many central and highly connected nodes [86].

5. Conclusions

Complex diseases, especially cancer, are extremely harmful to human health. There-
fore, the identification of biomarkers is key to dealing with complex disease studies. Path-
way analysis, combined with multiple types of high-throughput data, reflects biological
processes more clearly and comprehensively than analyses involving the assessment of
individual genes. For this reason, pathway-based complex disease analysis approaches
have become a hot research topic.

In this study, we began with the systematic analysis of associated genes using text
mining, followed by the identification of essential genes and pathways by functional
annotation. We emphasize the central roles performed by several important hub genes,
such as proteins from the IL8, KLF, JUN, and SERTAD1 families obtained by exposure to
benzene, while HRAS and STAT3 are hubs for exposure to malathion.

Although the network results corroborate the literature about hub genes plausibility as
potential biomarkers, additional validation studies are required to confirm this hypothesis.
Given that systems biology approaches for predicting and characterizing hub genes are
recent [82–85], the way in which data collection and network creation are conducted can
vary according to the purpose of the study.
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